A Best Covering Problem.
We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces.
Let m,n be positive integers such that m < n and let G(n,m) be the Grassmann manifold of all m-dimensional subspaces of ℝⁿ. For V ∈ G(n,m) let denote the orthogonal projection from ℝⁿ onto V. The following characterization of purely unrectifiable sets holds. Let A be an -measurable subset of ℝⁿ with . Then A is purely m-unrectifiable if and only if there exists a null subset Z of the universal bundle such that, for all P ∈ A, one has . One can replace “for all P ∈ A” by “for -a.e. P ∈...
We give a non-probabilistic proof of a theorem of Naor and Neiman that asserts that if (E, d) is a doubling metric space, there is an integer N > 0, depending only on the metric doubling constant, such that for each exponent α ∈ (1/2; 1), one can find a bilipschitz mapping F = (E; dα ) ⃗ ℝ RN.
We state and prove a stability result for the anisotropic version of the isoperimetric inequality. Namely if is a set with small anisotropic isoperimetric deficit, then is “close” to the Wulff shape set.
We introduce and study a rough (approximate) curvature-dimension condition for metric measure spaces, applicable especially in the framework of discrete spaces and graphs. This condition extends the one introduced by Karl-Theodor Sturm, in his 2006 article On the geometry of metric measure spaces II, to a larger class of (possibly non-geodesic) metric measure spaces. The rough curvature-dimension condition is stable under an appropriate notion of convergence, and stable under discretizations as...
We find a condition for a Borel mapping which implies that the Hausdorff dimension of is less than or equal to m-n for almost all .