Quantifying vasculature: new measures applied to arterial trees in the quail chorioallantoic membrane.
We consider an inhomogeneous measure μ with the inhomogeneous part a self-similar measure ν, and show that for a given r ∈ (0,∞) the lower and the upper quantization dimensions of order r of μ are bounded below by the quantization dimension of ν and bounded above by a unique number , related to the temperature function of the thermodynamic formalism that arises in the multifractal analysis of μ.
The quantization dimension function for the image measure of a shift-invariant ergodic measure with bounded distortion on a self-conformal set is determined, and its relationship to the temperature function of the thermodynamic formalism arising in multifractal analysis is established.
We estimate the spreading of the solution of the Schrödinger equation asymptotically in time, in term of the fractal properties of the associated spectral measures. For this, we exhibit a lower bound for the moments of order at time for the state defined by . We show that this lower bound can be expressed in term of the generalized Rényi dimension of the spectral measure associated to the hamiltonian and the state . We especially concentrate on continuous models.
The Sierpinski gasket and other self-similar fractal subsets of Rd, d ≥ 2, can be mapped by quasiconformal self-maps of Rd onto sets of Hausdorff dimension arbitrarily close to one. In R2 we construct explicit mappings. In Rd, d ≥ 3, the results follow from general theorems on the equivalence of invariant sets for iterated function systems under quasisymmetric maps and global quasiconformal maps. More specifically, we present geometric conditions ensuring that (i) isomorphic systems have quasisymmetrically...