Calculs de dimensions de packing
Page 1 Next
Fathi Ben Nasr (1996)
Colloquium Mathematicae
Bousch, Thierry, Heurteaux, Yanick (2000)
Annales Academiae Scientiarum Fennicae. Mathematica
Lund, John-Peter, Strichartz, Robert S., Vinson, Jade P. (1998)
Experimental Mathematics
Edgar, G.A. (2007)
The New York Journal of Mathematics [electronic only]
L. Olsen (2005)
Colloquium Mathematicae
For a subset and , the local Hausdorff dimension function of E at x is defined by where denotes the Hausdorff dimension. We give a complete characterization of the set of functions that are local Hausdorff dimension functions. In fact, we prove a significantly more general result, namely, we give a complete characterization of those functions that are local dimension functions of an arbitrary regular dimension index.
Tyson, Jeremy T., Wu, Jang-Mei (2005)
Annales Academiae Scientiarum Fennicae. Mathematica
Chen, Yanguang (2010)
Discrete Dynamics in Nature and Society
Cox, Alexander M.G., Obloj, Jan K. (2008)
Electronic Journal of Probability [electronic only]
Lapidus, Michel L., van Frankenhuysen, Machiel (2003)
Experimental Mathematics
Maria Moszyńska, Grzegorz Sójka (2010)
Bulletin of the Polish Academy of Sciences. Mathematics
We prove that if and δ are the Hausdorff metric and the radial metric on the space ⁿ of star bodies in ℝ, with 0 in the kernel and with radial function positive and continuous, then a family ⊂ ⁿ that is meager with respect to need not be meager with respect to δ. Further, we show that both the family of fractal star bodies and its complement are dense in ⁿ with respect to δ.
Manfred Denker, R. Mauldin, Z. Nitecki, Mariusz Urbański (1998)
Fundamenta Mathematicae
We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism.
Sahari, Mohamed Lamine, Djellit, Ilhem (2006)
Discrete Dynamics in Nature and Society
Kigami, Jun, Strichartz, Robert S., Walker, Katharine C. (2001)
Experimental Mathematics
Stéphane Jaffard (2000)
Revista Matemática Iberoamericana
We show that the Hölder exponent and the chirp exponent of a function can be prescribed simultaneously on a set of full measure, if they are both lower limits of continuous functions. We also show that this result is optimal: In general, Hölder and chirp exponents cannot be prescribed outside a set of Hausdorff dimension less than one. The direct part of the proof consists in an explicit construction of a function determined by its orthonormal wavelet coefficients; the optimality is the direct consequence...
Xue Hai Hu, Jun Wu (2009)
Acta Arithmetica
Daoxin Ding (2011)
Czechoslovak Mathematical Journal
In this paper, we first prove that the self-affine sets depend continuously on the expanding matrix and the digit set, and the corresponding self-affine measures with respect to the probability weight behave in much the same way. Moreover, we obtain some sufficient conditions for certain self-affine measures to be singular.
Roberto Peirone (2000)
Bollettino dell'Unione Matematica Italiana
è un particolare operatore di minimizzazione per forme di Dirichlet definite su un sottoinsieme finito di un frattale che è, in un certo senso, una sorta di frontiera di . Viene talvolta chiamato mappa di rinormalizzazione ed è stato usato per definire su un analogo del funzionale e un moto Browniano. In questo lavoro si provano alcuni risultati sull'unicità dell'autoforma (rispetto a ), e sulla convergenza dell'iterata di rinormalizzata. Questi risultati sono collegati con l'unicità...
Lee, Hung Hwan, Baek, In Soo (1995)
International Journal of Mathematics and Mathematical Sciences
Károly Simon, Boris Solomyak (1998)
Fundamenta Mathematicae
We prove a classification theorem of the “Glimm-Effros” type for Borel order relations: a Borel partial order on the reals either is Borel linearizable or includes a copy of a certain Borel partial order which is not Borel linearizable.
Ka-Sing Lau, Jianrong Wang (1995)
Monatshefte für Mathematik
Page 1 Next