Nearly All Convex Bodies Are Smooth and Strictly Convex.
We prove necessary and sufficient conditions for the validity of the classical chain rule in the Sobolev space and in the space of functions of bounded variation.
We study the closures of classes of log-concave measures under taking weak limits, linear transformations and tensor products. We investigate which uniform measures on convex bodies can be obtained starting from some class 𝒦. In particular we prove that if one starts from one-dimensional log-concave measures, one obtains no non-trivial uniform mesures on convex bodies.
A well-known mathematical property of the particle paths of Brownian motion is that such paths are, with probability one, everywhere continuous and nowhere differentiable. R. Feynman (1965) and elsewhere asserted without proof that an analogous property holds for the sample paths (or possible paths) of a non-relativistic quantum mechanical particle to which a conservative force is applied. Using the non-absolute integration theory of Kurzweil and Henstock, this article provides an introductory proof...
We study distance measures for lattice-generated sets in Rd, d>=3, with respect to non-isotropic distances l-l.K, induced by smooth symmetric convex bodies K. An effective Fourier-analytic approach is developed to get sharp upper bounds for the second moment of the weighted distance measure.
We present a theorem which generalizes some known theorems on the existence of nonmeasurable (in various senses) sets of the form X+Y. Some additional related questions concerning measure, category and the algebra of Borel sets are also studied.