Radon Nikodym property and set-valued integration
For a Banach space and a probability space , a new proof is given that a measure , with , has RN derivative with respect to iff there is a compact or a weakly compact such that is a finite valued countably additive measure. Here we define where is a finite disjoint collection of elements from , each contained in , and satisfies . Then the result is extended to the case when is a Frechet space.
We investigate the completely Ramsey, Lebesgue, and Marczewski σ-algebras and their relations to the Baire property in the Ellentuck and density topologies. Two theorems concerning the Marczewski σ-algebra (s) are presented. THEOREM. In the density topology D, (s) coincides with the σ-algebra of Lebesgue measurable sets. THEOREM. In the Ellentuck topology on , is a proper subset of the hereditary ideal associated with (s). We construct an example in the Ellentuck topology of a set which is...
In this paper, we extend the results of Orey and Taylor [S. Orey and S.J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc.28 (1974) 174–192] relative to random fractals generated by oscillations of Wiener processes to a multivariate framework. We consider a setup where Gaussian processes are indexed by classes of functions.
In this paper, we extend the results of Orey and Taylor [S. Orey and S.J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. 28 (1974) 174–192] relative to random fractals generated by oscillations of Wiener processes to a multivariate framework. We consider a setup where Gaussian processes are indexed by classes of functions.
We investigate some properties of density measures – finitely additive measures on the set of natural numbers extending asymptotic density. We introduce a class of density measures, which is defined using cluster points of the sequence as well as cluster points of some other similar sequences. We obtain range of possible values of density measures for any subset of . Our description of this range simplifies the description of Bhashkara Rao and Bhashkara Rao [Bhaskara Rao, K. P. S., Bhaskara Rao,...
We survey recent developments on the Kakeya problem.[Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial (Madrid), 2002].
Let X be a set with a symmetric kernel d (not necessarily a distance). The space (X,d) is said to have the weak (resp. strong) covering property of degree ≤ m [briefly prf(m) (resp. prF(m))], if, for each family B of closed balls of (X,d) with radii in a decreasing sequence (resp. with bounded radii), there is a subfamily, covering the center of each element of B, and of order ≤ m (resp. splitting into m disjoint families). Since Besicovitch, covering properties are known to be the main tool for...
We construct an intrinsic regular surface in the first Heisenberg group equipped wiht its Carnot-Carathéodory metric which has euclidean Hausdorff dimension . Moreover we prove that each intrinsic regular surface in this setting is a -dimensional topological manifold admitting a -Hölder continuous parameterization.