-distance sets, Falconer conjecture, and discrete analogs.
Page 1
Iosevich, A., Łaba, I. (2005)
Integers
M. Raja (1999)
Studia Mathematica
We introduce a property for a couple of topologies that allows us to give simple proofs of some classic results about Borel sets in Banach spaces by Edgar, Schachermayer and Talagrand as well as some new results. We characterize the existence of Kadec type renormings in the spirit of the new results for LUR spaces by Moltó, Orihuela and Troyanski.
Canela, Miguel A. (1982)
Portugaliae mathematica
Bernd Anger (1972)
Mathematische Annalen
Vincenzo Aversa, K. P. S. Bhaskara Rao (2002)
Mathematica Slovaca
Gabrielle Allouche, Jean-Paul Allouche, Jeffrey Shallit (2006)
Annales de l’institut Fourier
Nous montrons que le tracé d’un kolam indien classique, que l’on retrouve aussi dans la tradition des dessins sur le sable aux îles Vanuatu, peut être engendré par un morphisme de monoïde. La suite infinie morphique ainsi obtenue est reliée à la célèbre suite de Prouhet-Thue-Morse, mais elle n’est -automatique pour aucun entier .
Rémi Rhodes, Vincent Vargas (2011)
ESAIM: Probability and Statistics
We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [E. Bacry et al. Comm. Math. Phys. 236 (2003) 449–475]. If M is a non degenerate multifractal measure with associated metric ρ(x,y) = M([x,y]) and structure function ζ, we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimHρ with respect to ρ of the same set: ζ(dimHρ(K)) = dimH(K). Our results can...
Rémi Rhodes, Vincent Vargas (2012)
ESAIM: Probability and Statistics
We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [E. Bacry et al. Comm. Math. Phys.236 (2003) 449–475]. If M is a non degenerate multifractal measure with associated metric ρ(x,y) = M([x,y]) and structure function ζ, we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimHρ with respect to ρ of the same set: ζ(dimHρ(K)) = dimH(K). Our results can...
Karel Prikry (1976)
Monatshefte für Mathematik
Rudolf Výborný (2006)
Mathematica Bohemica
For a merely continuous partition of unity the PU integral is the Lebesgue integral.
Page 1