Displaying 221 – 240 of 2105

Showing per page

An area formula in metric spaces

Valentino Magnani (2011)

Colloquium Mathematicae

We present an area formula for continuous mappings between metric spaces, under minimal regularity assumptions. In particular, we do not require any notion of differentiability. This is a consequence of a measure-theoretic notion of Jacobian, defined as the density of a suitable "pull-back measure". Finally, we give some applications and examples.

An exact functional Radon-Nikodym theorem for Daniell integrals

E. de Amo, I. Chitescu, M. Díaz Carrillo (2001)

Studia Mathematica

Given two positive Daniell integrals I and J, with J absolutely continuous with respect to I, we find sufficient conditions in order to obtain an exact Radon-Nikodym derivative f of J with respect to I. The procedure of obtaining f is constructive.

An existence result on partitioning of a measurable space: Pareto optimality and core

Nobusumi Sagara (2006)

Kybernetika

This paper investigates the problem of optimal partitioning of a measurable space among a finite number of individuals. We demonstrate the sufficient conditions for the existence of weakly Pareto optimal partitions and for the equivalence between weak Pareto optimality and Pareto optimality. We demonstrate that every weakly Pareto optimal partition is a solution to the problem of maximizing a weighted sum of individual utilities. We also provide sufficient conditions for the existence of core partitions...

Currently displaying 221 – 240 of 2105