Displaying 21 – 40 of 344

Showing per page

On a Sobolev type inequality and its applications

Witold Bednorz (2006)

Studia Mathematica

Assume ||·|| is a norm on ℝⁿ and ||·||⁎ its dual. Consider the closed ball T : = B | | · | | ( 0 , r ) , r > 0. Suppose φ is an Orlicz function and ψ its conjugate. We prove that for arbitrary A,B > 0 and for each Lipschitz function f on T, s u p s , t T | f ( s ) - f ( t ) | 6 A B ( 0 r ψ ( 1 / A ε n - 1 ) ε n - 1 d ε + 1 / ( n | B | | · | | ( 0 , 1 ) | ) T φ ( 1 / B | | f ( u ) | | ) d u ) , where |·| is the Lebesgue measure on ℝⁿ. This is a strengthening of the Sobolev inequality obtained by M. Talagrand. We use this inequality to state, for a given concave, strictly increasing function η: ℝ₊ → ℝ with η(0) = 0, a necessary and sufficient condition on φ so that each...

On abstract Stieltjes measure

James E. Huneycutt Jr. (1971)

Annales de l'institut Fourier

In 1955, A. Revuz - Annales de l’Institut Fourier, vol. 6 (1955-56) - considered a type of Stieltjes measure defined on analogues of half-open, half-closed intervals in a partially ordered topological space. He states that these functions are finitely additive but his proof has an error. We shall furnish a new proof and extend some of this results to “measures” taking values in a topological abelian group.

Currently displaying 21 – 40 of 344