Displaying 641 – 660 of 2107

Showing per page

Extensions of Borel Measurable Maps and Ranges of Borel Bimeasurable Maps

Petr Holický (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove an abstract version of the Kuratowski extension theorem for Borel measurable maps of a given class. It enables us to deduce and improve its nonseparable version due to Hansell. We also study the ranges of not necessarily injective Borel bimeasurable maps f and show that some control on the relative classes of preimages and images of Borel sets under f enables one to get a bound on the absolute class of the range of f. This seems to be of some interest even within separable spaces.

Extensions of set functions.

Sergei V. Ovchinnikov, Jean Claude Falmagne (2003)

Mathware and Soft Computing

We establish a necessary and sufficient condition for a function defined on a subset of an algebra of sets to be extendable to a positive additive function on the algebra. It is algo shown that this condition is necessary and sufficient for a regular function defined on a regular subset of the Borel algebra of subsets of a given compact Hausdorff space to be extendable to a measure.

Extremal solutions of a general marginal problem

Petra Linhartová (1991)

Commentationes Mathematicae Universitatis Carolinae

The characterization of extremal points of the set of probability measures with given marginals is given in the general context of a marginal system. The sets of marginal uniqueness are studied and an example is added to illustrate the theory.

F σ -mappings and the invariance of absolute Borel classes

Petr Holický, Jiří Spurný (2004)

Fundamenta Mathematicae

It is proved that F σ -mappings preserve absolute Borel classes, which improves results of R. W. Hansell, J. E. Jayne and C. A. Rogers. The proof is based on the fact that any F σ -mapping f: X → Y of an absolute Suslin metric space X onto an absolute Suslin metric space Y becomes a piecewise perfect mapping when restricted to a suitable F σ -set X X satisfying f ( X ) = Y .

Filippov Lemma for certain second order differential inclusions

Grzegorz Bartuzel, Andrzej Fryszkowski (2012)

Open Mathematics

In the paper we give an analogue of the Filippov Lemma for the second order differential inclusions with the initial conditions y(0) = 0, y′(0) = 0, where the matrix A ∈ ℝd×d and multifunction is Lipschitz continuous in y with a t-independent constant l. The main result is the following: Assume that F is measurable in t and integrably bounded. Let y 0 ∈ W 2,1 be an arbitrary function fulfilling the above initial conditions and such that where p 0 ∈ L 1[0, 1]. Then there exists a solution y ∈ W 2,1...

Filters and sequences

Sławomir Solecki (2000)

Fundamenta Mathematicae

We consider two situations which relate properties of filters with properties of the limit operators with respect to these filters. In the first one, we show that the space of sequences having limits with respect to a Π 3 0 filter is itself Π 3 0 and therefore, by a result of Dobrowolski and Marciszewski, such spaces are topologically indistinguishable. This answers a question of Dobrowolski and Marciszewski. In the second one, we characterize universally measurable filters which fulfill Fatou’s lemma.

Finite Product of Semiring of Sets

Roland Coghetto (2015)

Formalized Mathematics

We formalize that the image of a semiring of sets [17] by an injective function is a semiring of sets.We offer a non-trivial example of a semiring of sets in a topological space [21]. Finally, we show that the finite product of a semiring of sets is also a semiring of sets [21] and that the finite product of a classical semiring of sets [8] is a classical semiring of sets. In this case, we use here the notation from the book of Aliprantis and Border [1].

Currently displaying 641 – 660 of 2107