Note on measures
We first prove an abstract result for a class of nonlocal problems using fixed point method. We apply this result to equations revelant from plasma physic problems. These equations contain terms like monotone or relative rearrangement of functions. So, we start the approximation study by using finite element to discretize this nonstandard quantities. We end the paper by giving a numerical resolution of a model containing those terms.
We consider processes Xₜ with values in and “time” index t in a subset A of the unit cube. A natural condition of boundedness of increments is assumed. We give a full characterization of the domains A for which all such processes are a.e. continuous. We use the notion of Talagrand’s majorizing measure as well as geometrical Paszkiewicz-type characteristics of the set A. A majorizing measure is constructed.
By using D. Preiss' approach to a construction from a paper by J. Matoušek and E. Matoušková, and some results of E. Matoušková, we prove that we can decompose a separable Banach space with modulus of convexity of power type p as a union of a ball small set (in a rather strong symmetric sense) and a set which is Aronszajn null. This improves an earlier unpublished result of E. Matoušková. As a corollary, in each separable Banach space with modulus of convexity of power type p, there exists a closed...