On joint distribution in quantum logics. II. Noncompatible observables
This paper i a continuation of the first part under the same title. The author studies a joint distribution in -finite measures for noncompatible observables of a quantum logic defined on some system of -independent Boolean sub--algebras of a Boolean -algebra. We present some necessary and sufficient conditions fot the existence of a joint distribution. In particular, it is shown that an arbitrary system of obsevables has a joint distribution in a measure iff it may be embedded into a system...