Displaying 281 – 300 of 311

Showing per page

Uniqueness of measure extensions in Banach spaces

J. Rodríguez, G. Vera (2006)

Studia Mathematica

Let X be a Banach space, B B X * a norming set and (X,B) the topology on X of pointwise convergence on B. We study the following question: given two (non-negative, countably additive and finite) measures μ₁ and μ₂ on Baire(X,w) which coincide on Baire(X,(X,B)), does it follow that μ₁ = μ₂? It turns out that this is not true in general, although the answer is affirmative provided that both μ₁ and μ₂ are convexly τ-additive (e.g. when X has the Pettis Integral Property). For a Banach space Y not containing...

Vector and operator valued measures as controls for infinite dimensional systems: optimal control

N.U. Ahmed (2008)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider a general class of systems determined by operator valued measures which are assumed to be countably additive in the strong operator topology. This replaces our previous assumption of countable additivity in the uniform operator topology by the weaker assumption. Under the relaxed assumption plus an additional assumption requiring the existence of a dominating measure, we prove some results on existence of solutions and their regularity properties both for linear and semilinear...

Volterra integral inclusions via Henstock-Kurzweil-Pettis integral

Bianca Satco (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.

Weak Baire measurability of the balls in a Banach space

José Rodríguez (2008)

Studia Mathematica

Let X be a Banach space. The property (∗) “the unit ball of X belongs to Baire(X, weak)” holds whenever the unit ball of X* is weak*-separable; on the other hand, it is also known that the validity of (∗) ensures that X* is weak*-separable. In this paper we use suitable renormings of ( ) and the Johnson-Lindenstrauss spaces to show that (∗) lies strictly between the weak*-separability of X* and that of its unit ball. As an application, we provide a negative answer to a question raised by K. Musiał....

Weak solutions of differential equations in Banach spaces

Mieczysław Cichoń (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we prove a theorem for the existence of pseudo-solutions to the Cauchy problem, x' = f(t,x), x(0) = x₀ in Banach spaces. The function f will be assumed Pettis-integrable, but this assumption is not sufficient for the existence of solutions. We impose a weak compactness type condition expressed in terms of measures of weak noncompactness. We show that under some additionally assumptions our solutions are, in fact, weak solutions or even strong solutions. Thus, our theorem is an essential...

Currently displaying 281 – 300 of 311