Measures vectorielies, measures cylindriques et propriété de Radon-Nikodym
Goldman, A. (1976)
Abstracta. 4th Winter School on Abstract Analysis
Debiève, C. (1997)
Bulletin of the Belgian Mathematical Society - Simon Stevin
P. Magnier (1970/1971)
Séminaire Équations aux dérivées partielles (Polytechnique)
Henri Heinich (1983)
Annales de l'I.H.P. Probabilités et statistiques
Danièle Bucchioni (1975)
Publications du Département de mathématiques (Lyon)
K. P. S. Bhaskara Rao, B. V. Rao (1979)
Colloquium Mathematicae
Miloslav Duchoň (2011)
Czechoslovak Mathematical Journal
Conditions, under which the elements of a locally convex vector space are the moments of a regular vector-valued measure and of a Pettis integrable function, both with values in a locally convex vector space, are investigated.
Wolfgang J. Marik (1987)
Czechoslovak Mathematical Journal
Ivan Dobrakov (1999)
Mathematica Slovaca
Bohner, Martin, Guseinov, Gusein Sh. (2006)
Advances in Difference Equations [electronic only]
Sokol Bush Kaliaj (2019)
Mathematica Bohemica
We define the Hake-variational McShane integral of Banach space valued functions defined on an open and bounded subset of -dimensional Euclidean space . It is a “natural” extension of the variational McShane integral (the strong McShane integral) from -dimensional closed non-degenerate intervals to open and bounded subsets of . We will show a theorem that characterizes the Hake-variational McShane integral in terms of the variational McShane integral. This theorem reduces the study of our...
P. Obradović (1987)
Matematički Vesnik
Miloslav Duchoň (1986)
Mathematica Slovaca
Zdena Riečanová (1989)
Mathematica Slovaca
L. Drewnowski (1974)
Studia Mathematica
José Gámez, José Mendoza (1998)
Studia Mathematica
The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function which is not Pettis integrable on any subinterval in [a,b], while belongs to for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dundord...
Miloslav Duchoň (1986)
Mathematica Slovaca
Peter Volauf (1980)
Mathematica Slovaca
Ivan Dobrakov (1988)
Czechoslovak Mathematical Journal
Ivan Dobrakov (1995)
Mathematica Slovaca