On compact group-valued measures
The collection of all sets of measure zero for a finitely additive, group-valued measure is studied and characterised from a combinatorial viewpoint.
A lattice ordered group valued subadditive measure is extended from an algebra of subsets of a set to a -algebra.
In this paper we introduce and investigate a Henstock-Kurzweil-type integral for Riesz-space-valued functions defined on (not necessarily bounded) subintervals of the extended real line. We prove some basic properties, among them the fact that our integral contains under suitable hypothesis the generalized Riemann integral and that every simple function which vanishes outside of a set of finite Lebesgue measure is integrable according to our definition, and in this case our integral coincides with...
Dato un qualsiasi spazio invariante per riordinamenti su un insieme aperto , si determina il più piccolo spazio invariante per riordinamenti con la proprietà che se è una applicazione che mantiene l'orientamento e , allora appartiene localmente a .