Topological aspects of q-regular measures
We point out two theorems on the Scorza Dragoni property for multifunctions. As an application, in particular, we improve a Carathéodory selection theorem by A. Cellina [4], by removing a compactness assumption.
Some new results about uniform (s)-boundedness for regular (l)-group-valued set functions are given.
Let X be a Banach space, a norming set and (X,B) the topology on X of pointwise convergence on B. We study the following question: given two (non-negative, countably additive and finite) measures μ₁ and μ₂ on Baire(X,w) which coincide on Baire(X,(X,B)), does it follow that μ₁ = μ₂? It turns out that this is not true in general, although the answer is affirmative provided that both μ₁ and μ₂ are convexly τ-additive (e.g. when X has the Pettis Integral Property). For a Banach space Y not containing...
In this paper we consider a general class of systems determined by operator valued measures which are assumed to be countably additive in the strong operator topology. This replaces our previous assumption of countable additivity in the uniform operator topology by the weaker assumption. Under the relaxed assumption plus an additional assumption requiring the existence of a dominating measure, we prove some results on existence of solutions and their regularity properties both for linear and semilinear...
In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.