Displaying 121 – 140 of 190

Showing per page

Questions liées à la théorie des espaces de Wiener

Albert Badrikian, Simone Chevet (1974)

Annales de l'institut Fourier

Nous donnons des conditions permettant de vérifier que l’image d’une mesure cylindrique μ sur un espace vectoriel topologique E , par une application linéaire continue dans un autre espace vectoriel topologique F , est une mesure de Randon. Dans une première partie, nous donnons des résultats généraux qui portent, soit sur des propriétés géométriques de l’espace F , soit sur la mesure cylindrique μ . Dans une seconde partie, nous donnons des conditions plus précises quand μ est une mesure cylindrique...

Radon Measures on Banach Spaces with their Weak Topologies

Jayne, J., Rogers, C. (1995)

Serdica Mathematical Journal

The main concern of this paper is to present some improvements to results on the existence or non-existence of countably additive Borel measures that are not Radon measures on Banach spaces taken with their weak topologies, on the standard axioms (ZFC) of set-theory. However, to put the results in perspective we shall need to say something about consistency results concerning measurable cardinals.

Relations between Shy Sets and Sets of ν p -Measure Zero in Solovay’s Model

G. Pantsulaia (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

An example of a non-zero non-atomic translation-invariant Borel measure ν p on the Banach space p ( 1 p ) is constructed in Solovay’s model. It is established that, for 1 ≤ p < ∞, the condition " ν p -almost every element of p has a property P" implies that “almost every” element of p (in the sense of [4]) has the property P. It is also shown that the converse is not valid.

Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths

Byoung Soo Kim, Dong Hyun Cho (2017)

Czechoslovak Mathematical Journal

Let C [ 0 , t ] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [ 0 , t ] , and define a random vector Z n : C [ 0 , t ] n + 1 by Z n ( x ) = x ( 0 ) + a ( 0 ) , 0 t 1 h ( s ) d x ( s ) + x ( 0 ) + a ( t 1 ) , , 0 t n h ( s ) d x ( s ) + x ( 0 ) + a ( t n ) , where a C [ 0 , t ] , h L 2 [ 0 , t ] , and 0 < t 1 < < t n t is a partition of [ 0 , t ] . Using simple formulas for generalized conditional Wiener integrals, given Z n we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions F in a Banach algebra which corresponds to Cameron-Storvick’s Banach algebra 𝒮 . Finally, we express the generalized analytic conditional Feynman...

Représentation intégrale de certaines mesures quasi-invariantes sur 𝒞 ( 𝐑 ) ; mesures extrémales et propriété de Markov

Gilles Royer, Marc Yor (1976)

Annales de l'institut Fourier

On établit pour le cône C des mesures μ positives bornées sur 𝒞 ( R ) , quasi-invariantes sous les translations de 𝒟 ( R ) et vérifiant : μ ( f + d w ) = μ ( d w ) exp R d t [ ( w ( t ) + 1 2 f ( t ) ) f ' ' ( t ) - P ( w ( t ) + f ( t ) + P ( w ( t ) ) ] (avec P polynôme borné inférieurement) les résultats suivants :– Toute mesure de C est intégrale de mesures appartenant aux génératrices extrémales de  C .– Les génératrices extrémales de C sont composées de mesures markoviennes.

Scattering length and capacity

M. Kac, J. M. Luttinger (1975)

Annales de l'institut Fourier

An expression in terms of the Wiener integral for the “scattering length” is given and used to discuss the relation between this quantity and electrostatic capacity.

Separabilità di L 2 ( μ ) per spazi riflessivi, μ misura gaussiana

Adriana Brogini Bratti (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Following H. Sato - Y. Okazaky we will prove that: if X is a topological vector space, locally convex and reflexive, and μ is a gaussian measure on 𝐂 ( X , X ) , then L 2 ( μ ) is separable.

Some Fine Properties of BV Functions on Wiener Spaces

Luigi Ambrosio, Michele Miranda Jr., Diego Pallara (2015)

Analysis and Geometry in Metric Spaces

In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.

Currently displaying 121 – 140 of 190