Conditional generalized analytic Feynman integrals and a generalized integral equation.
Every conical measure on a weak complete space is represented as integration with respect to a -additive measure on the cylindrical -algebra in . The connection between conical measures on and -valued measures gives then some sufficient conditions for the representing measure to be finite.
The main result of the paper provides a method for construction of regular non-subadditive measures in compact Hausdorff spaces. This result is followed by several examples. In the last section it is shown that “discretization” of ordinary measures is possible in the following sense. Given a positive regular Borel measure λ, one may construct a sequence of non-subadditive measures , each of which only takes a finite set of values, and such that converges to λ in the w*-topology.
Assuming the continuum hypothesis, we show that (i) there is a compact convex subset L of , and a probability Radon measure on L which has no separable support; (ii) there is a Corson compact space K, and a convex weak*-compact set M of Radon probability measures on K which has no -points.
Gruenhage asked if it was possible to cover the real line by less than continuum many translates of a compact nullset. Under the Continuum Hypothesis the answer is obviously negative. Elekes and Stepr mans gave an affirmative answer by showing that if is the well known compact nullset considered first by Erdős and Kakutani then ℝ can be covered by cof() many translates of . As this set has no analogue in more general groups, it was asked by Elekes and Stepr mans whether such a result holds for...
An irreducible partition of a space is a partition of that space into solid sets with a certain minimality property. Previously, these partitions were studied using the cup product in cohomology. This paper obtains similar results using the fundamental group instead. This allows the use of covering spaces to obtain information about irreducible partitions. This is then used to generalize Knudsen's construction of topological measures on the torus. We give examples of such measures that are invariant...