Displaying 81 – 100 of 636

Showing per page

Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space

Jae Gil Choi, Sang Kil Shim (2023)

Czechoslovak Mathematical Journal

We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space ( H , B , ν ) . An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space B . Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur...

Conical measures and vector measures

Igor Kluvánek (1977)

Annales de l'institut Fourier

Every conical measure on a weak complete space E is represented as integration with respect to a σ -additive measure on the cylindrical σ -algebra in E . The connection between conical measures on E and E -valued measures gives then some sufficient conditions for the representing measure to be finite.

Construction of non-subadditive measures and discretization of Borel measures

Johan Aarnes (1995)

Fundamenta Mathematicae

The main result of the paper provides a method for construction of regular non-subadditive measures in compact Hausdorff spaces. This result is followed by several examples. In the last section it is shown that “discretization” of ordinary measures is possible in the following sense. Given a positive regular Borel measure λ, one may construct a sequence of non-subadditive measures μ n , each of which only takes a finite set of values, and such that μ n converges to λ in the w*-topology.

Currently displaying 81 – 100 of 636