A method of construction of an invariant measure
A method of construction of an invariant measure on a function space is presented.
A method of construction of an invariant measure on a function space is presented.
Given an arbitrary countable subgroup of the torus, containing infinitely many rationals, we construct a strictly ergodic 0-1 Toeplitz flow with pure point spectrum equal to . For a large class of Toeplitz flows certain eigenvalues are induced by eigenvalues of the flow Y which can be seen along the aperiodic parts.
We give a necessary and sufficient condition for the solvability of a generalized cohomology equation, for an ergodic endomorphism of a probability measure space, in the space of measurable complex functions. This generalizes a result obtained in [7].
Let be a standard probability space. We say that a sub-σ-algebra of decomposes μ in an ergodic way if any regular conditional probability with respect to andμ satisfies, for μ-almost every x∈X, . In this case the equality , gives us an integral decomposition in “-ergodic” components. For any sub-σ-algebra of , we denote by the smallest sub-σ-algebra of containing and the collection of all setsAin satisfyingμ(A)=0. We say that isμ-complete if . Let be a non-empty family...