Singularité des produits de Anzai associés aux fonctions caractéristiques d'un intervalle
For homographic extensions of the one-sided Bernoulli shift we construct σ-finite invariant and ergodic product measures. We apply the above to the description of invariant product probability measures for smooth extensions of one-sided Bernoulli shifts.
Let X be a reflexive Banach space and (Ω,,μ) be a probability measure space. Let T: M(μ;X) → M(μ;X) be a linear operator, where M(μ;X) is the space of all X-valued strongly measurable functions on (Ω,,μ). We assume that T is continuous in the sense that if (fₙ) is a sequence in M(μ;X) and in measure for some f ∈ M(μ;X), then also in measure. Then we consider the functional equation f = (T-I)h, where f ∈ M(μ;X) is given. We obtain several conditions for the existence of h ∈ M(μ;X) satisfying...
Over fifty years ago, Irving Segal proved a theorem which leads to a characterization of those orthogonal transformations on a Hilbert space which induce ergodic transformations. Because Segal did not present his result in a way which made it readily accessible to specialists in ergodic theory, it was difficult for them to appreciate what he had done. The purpose of this note is to state and prove Segal's result in a way which, I hope, will win it the recognition which it deserves.
Let S and T be automorphisms of a standard Borel probability space. Some ergodic and spectral consequences of the equation ST = T²S are given for T ergodic and also when Tⁿ = I for some n>2. These ideas are used to construct examples of ergodic automorphisms S with oscillating maximal spectral multiplicity function. Other examples illustrating the theory are given, including Gaussian automorphisms having simple spectra and conjugate to their squares.