Displaying 541 – 560 of 601

Showing per page

The topological centralizers of Toeplitz flows and their Z2-extensions.

Wojciech Bulatek, Jan Kwiatkowski (1990)

Publicacions Matemàtiques

The topological centralizers of Toeplitz flows satisfying a condition (Sh) and their Z2-extensions are described. Such Toeplitz flows are topologically coalescent. If {q0, q1, ...} is a set of all except at least one prime numbers and I0, I1, ... are positive integers then the direct sum ⊕i=0∞ Zqi|i ⊕ Z can be the topological centralizer of a Toeplitz flow.

Toeplitz flows with pure point spectrum

A. Iwanik (1996)

Studia Mathematica

We construct strictly ergodic 0-1 Toeplitz flows with pure point spectrum and irrational eigenvalues. It is also shown that the property of being regular is not a measure-theoretic invariant for strictly ergodic Toeplitz flows.

Type III 0 cocycles without unbounded gaps

Toshihiro Hamachi (1995)

Commentationes Mathematicae Universitatis Carolinae

An example of type III 0 cocycle without unbounded gaps of an ergodic probability measure preserving transformation will be shown.

Une nouvelle propriété des suites de Rudin-Shapiro

Martine Queffelec (1987)

Annales de l'institut Fourier

Les suites de Rudin-Shapiro ont des propriétés extrémales en analyse harmonique. En remarquant qu’une telle suite est reconnaissable par un automate fini, nous en décrivons explicitement le spectre (type spectral maximal, multiplicité spectrale fonction multiplicité). Nous établissons par exemple, que la suite de Rudin-Shapiro généralisée à l’ordre q contient dans son spectre une composante de Lebesgue, de multiplicité q φ ( q ) .

Currently displaying 541 – 560 of 601