On the dynamics of rational maps
Recently D. Dumitrescu ([4], [5]) introduced a new kind of entropy of dynamical systems using fuzzy partitions ([1], [6]) instead of usual partitions (see also [7], [11], [12]). In this article a representation theorem is proved expressing the entropy of the dynamical system by the entropy of a generating partition.
Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure . We consider the map defined on X × G by and the cocycle generated by φ. Using a characterization of the ergodic invariant measures for , we give the form of the ergodic decomposition of or more generally of the -invariant measures , where is χ∘φ-conformal for an exponential χ on G.
The Stein-Weiss theorem that the distribution function of the Hilbert transform of the characteristic function of E depends only on the measure of E is generalized to the ergodic Hilbert transform.
A generalization of the Avez method of construction of an invariant measure is presented.