Displaying 581 – 600 of 901

Showing per page

On the multiplicity function of ergodic group extensions, II

Jakub Kwiatkowski, Mariusz Lemańczyk (1995)

Studia Mathematica

For an arbitrary set A + containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. If A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-dimensional torus.

On the multiplicity function of ergodic group extensions of rotations

G. Goodson, J. Kwiatkowski, M. Lemańczyk, P. Liardet (1992)

Studia Mathematica

For an arbitrary set A ⊆ ℕ satisfying 1 ∈ A and lcm(m₁,m₂) ∈ A whenever m₁,m₂ ∈ A, an ergodic abelian group extension of a rotation for which the range of the multiplicity function equals A is constructed.

On the sequence of integer parts of a good sequence for the ergodic theorem

Emmanuel Lesigne (1995)

Commentationes Mathematicae Universitatis Carolinae

If ( u n ) is a sequence of real numbers which is good for the ergodic theorem, is the sequence of the integer parts ( [ u n ] ) good for the ergodic theorem ? The answer is negative for the mean ergodic theorem and affirmative for the pointwise ergodic theorem.

Currently displaying 581 – 600 of 901