The Taylor series and growth of means.
The purpose of this paper is to establish a theorem which answers a conjecture of Paley on the distribution of values of Hadamard lacunary series and which is useful to study the Peano curve property of such series.
Mathematics Subject Classification: 30B10, 30B30; 33C10, 33C20The classical Cauchy-Hadamard, Abel and Tauber theorems provide useful information on the convergence of the power series in complex plane. In this paper we prove analogous theorems for series in the generalized Lommel-Wright functions with 4 indices. Results for interesting special cases of series involving Bessel, Bessel-Maitland, Lommel and Struve functions, are derived.We provide also a new asymptotic formula for the generalized ...
We give general theorems which assert that divergence and universality of certain limiting processes are generic properties. We also define the notion of algebraic genericity, and prove that these properties are algebraically generic as well. We show that universality can occur with Dirichlet series. Finally, we give a criterion for the set of common hypercyclic vectors of a family of operators to be algebraically generic.
This article continues two papers which recently appeared in this same journal. First, Dilcher and Stolarsky [140 (2009)] introduced two new power series, F(z) and G(z), related to the so-called Stern polynomials and having coefficients 0 and 1 only. Shortly later, Adamczewski [142 (2010)] proved, inter alia, that G(α),G(α⁴) are algebraically independent for any algebraic α with 0 < |α| < 1. Our first key result is that F and G have large blocks of consecutive zero coefficients. Then, a Roth-type...