Displaying 341 – 360 of 1148

Showing per page

Fekete-Szegö Inequality for Universally Prestarlike Functions

Shanmugam, T., Lourthu Mary, J. (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 30C45The universally prestarlike functions of order α ≤ 1 in the slit domain Λ = C [1;∞) have been recently introduced by S. Ruscheweyh. This notion generalizes the corresponding one for functions in the unit disk Δ (and other circular domains in C). In this paper, we obtain the coefficient inequalities and the Fekete-Szegö inequality for such functions.

Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator

M. K. Aouf, R. M. El-Ashwah, A. A. M. Hassan, A. H. Hassan (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, we obtain Fekete–Szegö inequalities for a generalized class of analytic functions f ( z ) 𝒜 for which 1 + 1 b z D α , β , λ , δ n f ( z ) ' D α , β , λ , δ n f ( z ) - 1 ( α , β , λ , δ 0 ; β > α ; λ > δ ; b * ; n 0 ; z U ) lies in a region starlike with respect to 1 and is symmetric with respect to the real axis.

Fekete-Szegő problem for subclasses of generalized uniformly starlike functions with respect to symmetric points

Nihat Yagmur, Halit Orhan (2014)

Mathematica Bohemica

The authors obtain the Fekete-Szegő inequality (according to parameters s and t in the region s 2 + s t + t 2 < 3 , s t and s + t 2 , or in the region s 2 + s t + t 2 > 3 , s t and s + t 2 ) for certain normalized analytic functions f ( z ) belonging to k -UST λ , μ n ( s , t , γ ) which satisfy the condition ( s - t ) z ( D λ , μ n f ( z ) ) ' D λ , μ n f ( s z ) - D λ , μ n f ( t z ) > k ( s - t ) z ( D λ , μ n f ( z ) ) ' D λ , μ n f ( s z ) - D λ , μ n f ( t z ) - 1 + γ , z 𝒰 . Also certain...

Currently displaying 341 – 360 of 1148