Page 1

Displaying 1 – 14 of 14

Showing per page

Landau's theorem for p-harmonic mappings in several variables

Sh. Chen, S. Ponnusamy, X. Wang (2012)

Annales Polonici Mathematici

A 2p-times continuously differentiable complex-valued function f = u + iv in a domain D ⊆ ℂ is p-harmonic if f satisfies the p-harmonic equation Δ p f = 0 , where p (≥ 1) is a positive integer and Δ represents the complex Laplacian operator. If Ω ⊂ ℂⁿ is a domain, then a function f : Ω m is said to be p-harmonic in Ω if each component function f i (i∈ 1,...,m) of f = ( f , . . . , f m ) is p-harmonic with respect to each variable separately. In this paper, we prove Landau and Bloch’s theorem for a class of p-harmonic mappings f from...

Lebesgue measure and mappings of the Sobolev class W 1 , n

O. Martio (1995)

Banach Center Publications

We present a survey of the Lusin condition (N) for W 1 , n -Sobolev mappings f : G n defined in a domain G of n . Applications to the boundary behavior of conformal mappings are discussed.

Liouville type theorems for mappings with bounded (co)-distortion

Marc Troyanov, Sergei Vodop'yanov (2002)

Annales de l’institut Fourier

We obtain Liouville type theorems for mappings with bounded s -distorsion between Riemannian manifolds. Besides these mappings, we introduce and study a new class, which we call mappings with bounded q -codistorsion.

Lipschitz constants for a hyperbolic type metric under Möbius transformations

Yinping Wu, Gendi Wang, Gaili Jia, Xiaohui Zhang (2024)

Czechoslovak Mathematical Journal

Let D be a nonempty open set in a metric space ( X , d ) with D . Define h D , c ( x , y ) = log 1 + c d ( x , y ) d D ( x ) d D ( y ) , where d D ( x ) = d ( x , D ) is the distance from x to the boundary of D . For every c 2 , h D , c is a metric. We study the sharp Lipschitz constants for the metric h D , c under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.

Loewner chains and quasiconformal extension of holomorphic mappings

Hidetaka Hamada, Gabriela Kohr (2003)

Annales Polonici Mathematici

Let f(z,t) be a Loewner chain on the Euclidean unit ball B in ℂⁿ. Assume that f(z) = f(z,0) is quasiconformal. We give a sufficient condition for f to extend to a quasiconformal homeomorphism of 2 n onto itself.

Currently displaying 1 – 14 of 14

Page 1