Displaying 21 – 40 of 53

Showing per page

Linear Fractional PDE, Uniqueness of Global Solutions

Schäfer, Ingo, Kempfle, Siegmar, Nolte, Bodo (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 47A60, 30C15.In this paper we treat the question of existence and uniqueness of solutions of linear fractional partial differential equations. Along examples we show that, due to the global definition of fractional derivatives, uniqueness is only sure in case of global initial conditions.

Linearly invariant families of holomorphic functions in the unit polydisc

Janusz Godula, Victor Starkov (1996)

Banach Center Publications

In this paper we extend the definition of the linearly invariant family and the definition of the universal linearly invariant family to higher dimensional case. We characterize these classes and give some of their properties. We also give a relationship of these families with the Bloch space.

Linearly-invariant families and generalized Meixner–Pollaczek polynomials

Iwona Naraniecka, Jan Szynal, Anna Tatarczak (2013)

Annales UMCS, Mathematica

The extremal functions f0(z) realizing the maxima of some functionals (e.g. max |a3|, and max arg f′(z)) within the so-called universal linearly invariant family Uα (in the sense of Pommerenke [10]) have such a form that f′0(z) looks similar to generating function for Meixner-Pollaczek (MP) polynomials [2], [8]. This fact gives motivation for the definition and study of the generalized Meixner-Pollaczek (GMP) polynomials Pλn (x; θ,ψ) of a real variable x as coefficients of [###] where the parameters...

Liouville type theorems for mappings with bounded (co)-distortion

Marc Troyanov, Sergei Vodop'yanov (2002)

Annales de l’institut Fourier

We obtain Liouville type theorems for mappings with bounded s -distorsion between Riemannian manifolds. Besides these mappings, we introduce and study a new class, which we call mappings with bounded q -codistorsion.

Lipschitz constants for a hyperbolic type metric under Möbius transformations

Yinping Wu, Gendi Wang, Gaili Jia, Xiaohui Zhang (2024)

Czechoslovak Mathematical Journal

Let D be a nonempty open set in a metric space ( X , d ) with D . Define h D , c ( x , y ) = log 1 + c d ( x , y ) d D ( x ) d D ( y ) , where d D ( x ) = d ( x , D ) is the distance from x to the boundary of D . For every c 2 , h D , c is a metric. We study the sharp Lipschitz constants for the metric h D , c under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.

Currently displaying 21 – 40 of 53