Displaying 41 – 60 of 86

Showing per page

Random perturbations of exponential Riesz bases in L 2 ( - π , π )

Gennadii Chistyakov, Yura Lyubarskii (1997)

Annales de l'institut Fourier

Let a sequence { λ n } be given such that the exponential system { exp ( i λ n x ) } forms a Riesz basis in L 2 ( - π , π ) and { ξ n } be a sequence of independent real-valued random variables. We study the properties of the system { exp ( i ( λ n + ξ n ) x ) } as well as related problems on estimation of entire functions with random zeroes and also problems on reconstruction of bandlimited signals with bandwidth 2 π via their samples at the random points { λ n + ξ n } .

Tail probability and singularity of Laplace-Stieltjes transform of a Pareto type random variable

Kenji Nakagawa (2015)

Applications of Mathematics

We give a sufficient condition for a non-negative random variable X to be of Pareto type by investigating the Laplace-Stieltjes transform of the cumulative distribution function. We focus on the relation between the singularity at the real point of the axis of convergence and the asymptotic decay of the tail probability. For the proof of our theorems, we apply Graham-Vaaler’s complex Tauberian theorem. As an application of our theorems, we consider the asymptotic decay of the stationary distribution...

The deficiency of entire functions with Fejér gaps

Takafumi Murai (1983)

Annales de l'institut Fourier

We say that an entire function f ( z ) = k = 0 a k z n k ( 0 = n 0 < n 1 < n 2 < ... ) has Fejér gaps if k = 1 1 / n k < . The main result of this paper is as follows: An entire function with Fejér gaps has no finite deficient value.

Ultraconvergence et singularités pour une classe de séries d'exponentielles

Maurice Blambert, R. Parvatham (1979)

Annales de l'institut Fourier

Localisation des singularités des fonctions analytiques définies par des séries du type Σ P n ( s ) exp ( - s λ n , où les λ n sont complexes et où les P n ( s ) sont des polynômes tayloriens, en utilisant des propriétés obtenues selon deux méthodes originellement dues l’une à B. Lepson pour les séries d’exponentielles à coefficients polynomiaux et dont la suite des exposants est une D -suite et l’autre à G. L. Luntz pour les séries de Taylor-Dirichlet. Le résultat fondamental utilise un théorème de A. F. Leont’ev-G. P. Lapin...

Currently displaying 41 – 60 of 86