Displaying 81 – 100 of 103

Showing per page

On unicity of meromorphic functions due to a result of Yang - Hua

Xiao-Tian Bai, Qi Han (2007)

Archivum Mathematicum

This paper studies the unicity of meromorphic(resp. entire) functions of the form f n f ' and obtains the following main result: Let f and g be two non-constant meromorphic (resp. entire) functions, and let a { 0 } be a non-zero finite value. Then, the condition that E 3 ) ( a , f n f ' ) = E 3 ) ( a , g n g ' ) implies that either f = d g for some ( n + 1 ) -th root of unity d , or f = c 1 e c z and g = c 2 e - c z for three non-zero constants c , c 1 and c 2 with ( c 1 c 2 ) n + 1 c 2 = - a 2 provided that n 11 (resp. n 6 ). It improves a result of C. C. Yang and X. H. Hua. Also, some other related problems are discussed.

On zeros of differences of meromorphic functions

Yong Liu, HongXun Yi (2011)

Annales Polonici Mathematici

Let f be a transcendental meromorphic function and g ( z ) = f ( z + c ) + + f ( z + c k ) - k f ( z ) and g k ( z ) = f ( z + c ) f ( z + c k ) - f k ( z ) . A number of results are obtained concerning the exponents of convergence of the zeros of g(z), g k ( z ) , g(z)/f(z), and g k ( z ) / f k ( z ) .

Currently displaying 81 – 100 of 103