Omnipresent holomorphic operators and maximal cluster sets
We prove a theorem on the growth of a solution of a kth-order linear differential equation. From this we obtain some uniqueness theorems. Our results improve several known results. Some examples show that the results are best possible.
Several sets of quaternionic functions are described and studied with respect to hyperholomorphy, addition and (non-commutative) multiplication, on open sets of ℍ, then Hamilton 4-manifolds analogous to Riemann surfaces, for ℍ instead of ℂ, are defined, and so begin to describe a class of four-dimensional manifolds.
In this paper, a generalization of a result on the uniform best approximation of α cos nx + β sin nx by trigonometric polynomials of degree less than n is considered and its relationship with a well-known polynomial inequality of C. Visser is indicated.
In the paper we prove a uniqueness theorem for meromorphic functions which provides an answer to a question of H. X. Yi.
The motivation of this paper is to study the uniqueness of meromorphic functions sharing a nonzero polynomial with the help of the idea of normal family. The result of the paper improves and generalizes the recent result due to Zhang and Xu [24]. Our another remarkable aim is to solve an open problem as posed in the last section of [24].