On a system of functional equations.
Let f be a quadratic map (more generally, , d > 1) of the complex plane. We give sufficient conditions for f to have no measurable invariant linefields on its Julia set. We also prove that if the series converges absolutely, then its sum is non-zero. In the proof we use analytic tools, such as integral and transfer (Ruelle-type) operators and approximation theorems.
Consider the space of entire functions represented by multiple Dirichlet series that becomes a non uniformly convex Banach space which is also proved to be dense, countable and separable. Continuing further, for the given space the characterization of bounded linear transformations in terms of matrix and characterization of linear functional has been obtained.
Kennedy obtained sharp estimates of the growth of the Nevanlinna characteristic of the derivative of a function f analytic and with bounded characteristic in the unit disc. Actually, Kennedy's results are sharp even for VMOA functions. It is well known that any BMOA function is a Bloch function and any VMOA function belongs to the little Bloch space. In this paper we study the possibility of extending Kennedy's results to certain classes of Bloch functions. Also, we prove some more general results...
Following the attracting and preperiodic cases, in this paper we prove the existence of weakly repelling fixed points for transcendental meromorphic maps, provided that their Fatou set contains a multiply connected parabolic basin. We use quasi-conformal surgery and virtually repelling fixed point techniques.