Displaying 161 – 180 of 248

Showing per page

On the lower order ( R ) of an entire Dirichlet series

P. K. Jain, D. R. Jain (1974)

Annales de l'institut Fourier

The estimations of lower order ( R ) λ in terms of the sequences { a n } and { λ n } for an entire Dirichlet series f ( s ) = n = 1 a n e s λ n , have been obtained, namely : λ = max { λ n p } lim inf p λ n p log λ n p - 1 log | a n p | - 1 = max { λ n p } lim inf p ( λ n p - λ n p - 1 ) log λ n p - 1 log | a n p - 1 | a n p | . One of these estimations improves considerably the estimations earlier obtained by Rahman (Quart. J. Math. Oxford, (2), 7, 96-99 (1956)) and Juneja and Singh (Math. Ann., 184(1969), 25-29 ).

On the mean values of an analytic function.

G. S. Srivastava, Sunita Rani (1992)

Annales Polonici Mathematici

Let f(z), z = r e i θ , be analytic in the finite disc |z| < R. The growth properties of f(z) are studied using the mean values I δ ( r ) and the iterated mean values N δ , k ( r ) of f(z). A convexity result for the above mean values is obtained and their relative growth is studied using the order and type of f(z).

On the meromorphic solutions of a certain type of nonlinear difference-differential equation

Sujoy Majumder, Lata Mahato (2023)

Mathematica Bohemica

The main objective of this paper is to give the specific forms of the meromorphic solutions of the nonlinear difference-differential equation f n ( z ) + P d ( z , f ) = p 1 ( z ) e α 1 ( z ) + p 2 ( z ) e α 2 ( z ) , where P d ( z , f ) is a difference-differential polynomial in f ( z ) of degree d n - 1 with small functions of f ( z ) as its coefficients, p 1 , p 2 are nonzero rational functions and α 1 , α 2 are non-constant polynomials. More precisely, we find out the conditions for ensuring the existence of meromorphic solutions of the above equation.

Currently displaying 161 – 180 of 248