Experiment on numerical conformal mapping of unbounded multiply connected domain in fundamental solutions method.
Extending previous results of H. Salas we obtain a characterisation of hypercyclic weighted shifts on an arbitrary F-sequence space in which the canonical unit vectors form a Schauder basis. If the basis is unconditional we give a characterisation of those hypercyclic weighted shifts that are even chaotic.
Starting from Lagrange interpolation of the exponential function in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space . Given such a representable entire funtion , in order to study the approximation problem and the uniform convergence of these polynomials to on bounded sets of , we present a sufficient growth condition on the interpolating...
2000 Mathematics Subject Classification: 30C40, 30D50, 30E10, 30E15, 42C05.Let α = β+γ be a positive finite measure defined on the Borel sets of C, with compact support, where β is a measure concentrated on a closed Jordan curve or on an arc (a circle or a segment) and γ is a discrete measure concentrated on an infinite number of points. In this survey paper, we present a synthesis on the asymptotic behaviour of orthogonal polynomials or Lp extremal polynomials associated to the measure α. We analyze...
Let f be meromorphic on the compact set E ⊂ C with maximal Green domain of meromorphy , ρ(f) < ∞. We investigate rational approximants of f on E with numerator degree ≤ n and denominator degree ≤ mₙ. We show that a geometric convergence rate of order on E implies uniform maximal convergence in m₁-measure inside if mₙ = o(n/log n) as n → ∞. If mₙ = o(n), n → ∞, then maximal convergence in capacity inside can be proved at least for a subsequence Λ ⊂ ℕ. Moreover, an analogue of Walsh’s...