On the two-dimensional moment problem.
We present some results on the location of zeros of regular polynomials of a quaternionic variable. We derive new bounds of Eneström-Kakeya type for the zeros of these polynomials by virtue of a maximum modulus theorem and the structure of the zero sets of a regular product established in the newly developed theory of regular functions and polynomials of a quaternionic variable. Our results extend some classical results from complex to the quaternionic setting as well.
In this paper we completely characterize those weighted Hardy spaces that are Poletsky-Stessin Hardy spaces . We also provide a reduction of problems to problems and demonstrate how such a reduction can be used to make shortcuts in the proofs of the interpolation theorem and corona problem.