The Apollonian metric: limits of the comparison and bilipschitz properties.
Page 1
Hästö, Peter A. (2003)
Abstract and Applied Analysis
Hästö, Peter A. (2003)
Annales Academiae Scientiarum Fennicae. Mathematica
Wing-Keung To, Lin Weng (1997)
Manuscripta mathematica
Demirel, Oğuzhan, Soytürk, Emine (2008)
Novi Sad Journal of Mathematics
Short, Ian (2006)
Annales Academiae Scientiarum Fennicae. Mathematica
Beardon, Alan F. (2003)
Annales Academiae Scientiarum Fennicae. Mathematica
Beardon, A.F. (2001)
Annales Academiae Scientiarum Fennicae. Mathematica
Ungar, Abraham A. (2007)
Banach Journal of Mathematical Analysis [electronic only]
Peter Pflug, Marek Jarnicki (1991)
Mathematische Annalen
Nicolas Curien, Wendelin Werner (2013)
Journal of the European Mathematical Society
We construct and study the unique random tiling of the hyperbolic plane into ideal hyperbolic triangles (with the three corners located on the boundary) that is invariant (in law) with respect to Möbius transformations, and possesses a natural spatial Markov property that can be roughly described as the conditional independence of the two parts of the triangulation on the two sides of the edge of one of its triangles.
Yamashita, Shinji (1994)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Langmeyer, Navah (1998)
Annales Academiae Scientiarum Fennicae. Mathematica
Kazuo Azukawa (1995)
Banach Center Publications
Oğuzhan Demirel (2009)
Commentationes Mathematicae Universitatis Carolinae
In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.
Christophe Bavard (2005)
Bulletin de la Société Mathématique de France
Nous développons une théorie de Voronoï géométrique. En l’appliquant aux familles classiques de réseaux euclidiens (par exemple symplectiques ou orthogonaux), nous obtenons notamment de nouveaux résultats de finitude concernant les configurations de vecteurs minimaux et les réseaux particuliers (par exemple parfaits) de ces familles. Les méthodes géométriques introduites sont également illustrées par l’étude d’objets voisins (formes de Humbert) ou analogues (surfaces de Riemann).
Ma, William, Minda, David (1997)
Annales Academiae Scientiarum Fennicae. Mathematica
Page 1