A note of the Torelli spaces of non-orientable compact Klein surfaces.
A hyperbolic geodesic joining two punctures on a Riemann surface has infinite length. To obtain a useful distance-like quantity we define a finite pseudo-length of such a geodesic in terms of the hyperbolic length of its surrounding geodesic loop. There is a well defined angle between two geodesics meeting at a puncture, and our pseudo-trigonometry connects these angles with pseudo-lengths. We state and prove a theorem resembling Ptolemy's classical theorem on cyclic quadrilaterals and three general...