Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Homogeneity of dynamically defined wild knots.

Gabriela Hinojosa, Alberto Verjovsky (2006)

Revista Matemática Complutense

In this paper we prove that a wild knot K which is the limit set of a Kleinian group acting conformally on the unit 3-sphere, with its standard metric, is homogeneous: given two points p, q ∈ K, there exists a homeomorphism f of the sphere such that f(K) = K and f(p) = q. We also show that if the wild knot is a fibered knot then we can choose an f which preserves the fibers.

Homology of origamis with symmetries

Carlos Matheus, Jean-Christophe Yoccoz, David Zmiaikou (2014)

Annales de l’institut Fourier

Given an origami (square-tiled surface) M with automorphism group Γ , we compute the decomposition of the first homology group of M into isotypic Γ -submodules. Through the action of the affine group of M on the homology group, we deduce some consequences for the multiplicities of the Lyapunov exponents of the Kontsevich-Zorich cocycle. We also construct and study several families of interesting origamis illustrating our results.

Hyperbolic spaces in Teichmüller spaces

Christopher J. Leininger, Saul Schleimer (2014)

Journal of the European Mathematical Society

We prove, for any n , that there is a closed connected orientable surface S so that the hyperbolic space n almost-isometrically embeds into the Teichmüller space of S , with quasi-convex image lying in the thick part. As a consequence, n quasi-isometrically embeds in the curve complex of S .

Currently displaying 1 – 20 of 22

Page 1 Next