Displaying 541 – 560 of 887

Showing per page

Schottky uniformizations of Z22 actions on Riemann surfaces.

Rubén A. Hidalgo (2005)

Revista Matemática Complutense

Given a closed Riemann surface S together a group of its conformal automorphisms H ≅ Z22, it is known that there are Schottky uniformizations of S realizing H. In this note we proceed to give an explicit Schottky uniformizations for each of all different topological actions of Z22 as group of conformal automorphisms on a closed Riemann surface.

Sharp bounds for the intersection of nodal lines with certain curves

Junehyuk Jung (2014)

Journal of the European Mathematical Society

Let Y be a hyperbolic surface and let φ be a Laplacian eigenfunction having eigenvalue - 1 / 4 - τ 2 with τ > 0 . Let N ( φ ) be the set of nodal lines of φ . For a fixed analytic curve γ of finite length, we study the number of intersections between N ( φ ) and γ in terms of τ . When Y is compact and γ a geodesic circle, or when Y has finite volume and γ is a closed horocycle, we prove that γ is “good” in the sense of [TZ]. As a result, we obtain that the number of intersections between N ( φ ) and γ is O ( τ ) . This bound is sharp.

Sharp norm estimate of Schwarzian derivative for a class of convex functions

Stanisława Kanas, Toshiyuki Sugawa (2011)

Annales Polonici Mathematici

We establish a sharp norm estimate of the Schwarzian derivative for a function in the classes of convex functions introduced by Ma and Minda [Proceedings of the Conference on Complex Analysis, Int. Press, 1992, 157-169]. As applications, we give sharp norm estimates for strongly convex functions of order α, 0 < α < 1, and for uniformly convex functions.

Currently displaying 541 – 560 of 887