Analytic classes on subframe and expanded disk and the s differential operator in polydisk.
give estimates for the approximation numbers of composition operators on the Hp spaces, 1 ≤ p < ∞
Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping and that of , we study various norms for , where is the Toeplitz operator with symbol . In Theorem , given polynomials and we find a symbol such that . We extend some of our results to the polydisc.
The survey collects many recent advances on area Nevanlinna type classes and related spaces of analytic functions in the unit disk concerning zero sets and factorization representations of these classes and discusses approaches, used in proofs of these results.
We extend and simplify results of [Din 2010] where the asymptotic behavior of the holomorphic sectional curvature of the Bergman metric in annuli is studied. Similarly to [Din 2010] the description enables us to construct an infinitely connected planar domain (in our paper it is a Zalcman type domain) for which the supremum of the holomorphic sectional curvature is two, whereas its infimum is equal to -∞ .
Estudiamos algunas cuestiones estructurales acerca del espacio localmente convexo HV∞, que está formado por funciones analíticas en el disco unidad abierto. Construimos una descomposición atómica de este espacio, usando un retículo de puntos del disco unidad que es más denso que el usual. También demostramos que HV∞ no es nuclear.