On -solutions of the Laplace equation and zeros of holomorphic functions
Let , and let , be given. In this paper we study the dimension of -harmonic measures that arise from non-negative solutions to the -Laplace equation, vanishing on a portion of , in the setting of -Reifenberg flat domains. We prove, for , that there exists small such that if is a -Reifenberg flat domain with , then -harmonic measure is concentrated on a set of -finite -measure. We prove, for , that for sufficiently flat Wolff snowflakes the Hausdorff dimension of -harmonic measure...
In this paper, we compute explicitly the reproducing kernel of the space of homogeneous polynomials of degree and Dunkl polyharmonic of degree , i.e. , , where is the Dunkl Laplacian and we study the convergence of the orthogonal series of Dunkl polyharmonic homogeneous polynomials.
In this paper, we characterize a class of biharmonic maps from and between product manifolds in terms of the warping function. Examples are constructed when one of the factors is either Euclidean space or sphere.
Two kinds of orthogonal decompositions of the Sobolev space W̊₂¹ and hence also of for bounded domains are given. They originate from a decomposition of W̊₂¹ into the orthogonal sum of the subspace of the -solenoidal functions, k ≥ 1, and its explicitly given orthogonal complement. This decomposition is developed in the real as well as in the complex case. For the solenoidal subspace (k = 0) the decomposition appears in a little different form. In the second kind decomposition the -solenoidal...