Displaying 501 – 520 of 700

Showing per page

Some remarks on the existence of a resolvent

Masanori Kishi (1975)

Annales de l'institut Fourier

Noting that a resolvent is associated with a convolution kernel x satisfying the domination principle if and only if x has the dominated convergence property, we give some remarks on the existence of a resolvent.

Steady vortex rings with swirl in an ideal fluid: asymptotics for some solutions in exterior domains

Tadie (1999)

Applications of Mathematics

In this paper, the axisymmetric flow in an ideal fluid outside the infinite cylinder ( r d ) where ( r , θ , z ) denotes the cylindrical co-ordinates in 3 is considered. The motion is with swirl (i.e. the θ -component of the velocity of the flow is non constant). The (non-dimensional) equation governing the phenomenon is (Pd) displayed below. It is known from e.g. that for the problem without swirl ( f q = 0 in (f)) in the whole space, as the flux constant k tends to , 1) dist ( 0 z , A ) = O ( k 1 / 2 ) ; diam A = O ( exp ( - c 0 k 3 / 2 ) ) ; 2) ( k 1 / 2 Ψ ) k converges to a vortex cylinder U m (see...

Su alcune questioni connesse con il problema di derivata obliqua regolare per le funzioni armoniche

Enrico Magenes (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

— Vengono riconsiderati il problema di derivata obliqua regolare e quello misto di Dirichlet-derivata obliqua regolare per le funzioni armoniche in un dominio di R 3 e le questioni di completezza hilbertiana connesse già studiate in un precedente lavoro e viene data una nuova dimostrazione di un teorema di unicità.

Superharmonic extension and harmonic approximation

Stephen J. Gardiner (1994)

Annales de l'institut Fourier

Let Ω be an open set in n and E be a subset of Ω . We characterize those pairs ( Ω , E ) which permit the extension of superharmonic functions from E to Ω , or the approximation of functions on E by harmonic functions on Ω .

Superharmonicity of nonlinear ground states.

Peter Lindqvist, Juan Manfredi, Eero Saksman (2000)

Revista Matemática Iberoamericana

The objective of our note is to prove that, at least for a convex domain, the ground state of the p-Laplacian operatorΔpu = div (|∇u|p-2 ∇u)is a superharmonic function, provided that 2 ≤ p ≤ ∞. The ground state of Δp is the positive solution with boundary values zero of the equationdiv(|∇u|p-2 ∇u) + λ |u|p-2 u = 0in the bounded domain Ω in the n-dimensional Euclidean space.

Currently displaying 501 – 520 of 700