Sur les ensembles pluripolaires complets
0. Introduction. Nous donnons ici une étude systématique des systèmes doublement orthogonaux "de Bergman" et leurs applications à certains aspects de l'analyse pluricomplexe: espaces de fonctions holomorphes, fonctions séparément analytiques. C'est en quelque sorte un article de synthèse. On y trouve cependant des démonstrations détaillées qui n'ont paru nulle part ailleurs.
We study nonnegative functions which are harmonic on a Lipschitz domain with respect to symmetric stable processes. We prove that if two such functions vanish continuously outside the domain near a part of its boundary, then their ratio is bounded near this part of the boundary.
Dirac-harmonic maps are a mathematical version (with commuting variables only) of the solutions of the field equations of the non-linear supersymmetric sigma model of quantum field theory. We explain this structure, including the appropriate boundary conditions, in a geometric framework. The main results of our paper are concerned with the analytic regularity theory of such Dirac-harmonic maps. We study Dirac-harmonic maps from a Riemannian surface to an arbitrary compact Riemannian manifold. We...