Page 1

Displaying 1 – 6 of 6

Showing per page

On gradient at infinity of semialgebraic functions

Didier D'Acunto, Vincent Grandjean (2005)

Annales Polonici Mathematici

Let f: ℝⁿ → ℝ be a C² semialgebraic function and let c be an asymptotic critical value of f. We prove that there exists a smallest rational number ϱ c 1 such that |x|·|∇f| and | f ( x ) - c | ϱ c are separated at infinity. If c is a regular value and ϱ c < 1 , then f is a locally trivial fibration over c, and the trivialisation is realised by the flow of the gradient field of f.

On the Łojasiewicz exponent of the gradient of a holomorphic function

Andrzej Lenarcik (1998)

Banach Center Publications

The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality | g r a d h ( x , y ) | c | ( x , y ) | λ holds near 0 C 2 for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.

Currently displaying 1 – 6 of 6

Page 1