Une exemple de disque polynomialement convexe.
On démontre une formule d’interpolation pour une fonction de deux variables complexes qui tient compte des valeurs de cette fonction ainsi que de ses dérivées partielles par rapport à en des points d’un sous-groupe de de rang . On explique préalablement comment, dans les grandes lignes, une telle formule permet de ramener la conjecture de Schanuel à un énoncé dont la forme est celle d’un critère d’indépendance algébrique.