The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Oka theory has its roots in the classical Oka-Grauert principle whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomorphic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989.In this expository paper we discuss Oka manifolds and Oka maps. We describe equivalent characterizations...
We show that the converse of the aproximation theorem of Andreotti and Grauert does not hold. More precisely we construct a -complete open subset (which is an analytic complement in the unit ball) such that the restriction map has a dense image for every but the pair is not a -Runge pair.
By the Oka-Weil theorem, each holomorphic function f in a neighbourhood of a compact polynomially convex set can be approximated uniformly on K by complex polynomials. The famous Bernstein-Walsh-Siciak theorem specifies the Oka-Weil result: it states that the distance (in the supremum norm on K) of f to the space of complex polynomials of degree at most n tends to zero not slower than the sequence M(f)ρ(f)ⁿ for some M(f) > 0 and ρ(f) ∈ (0,1). The aim of this note is to deduce the uniform version,...
We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.
Currently displaying 1 –
9 of
9