Displaying 121 – 140 of 166

Showing per page

Proper holomorphic mappings vs. peak points and Shilov boundary

Łukasz Kosiński, Włodzimierz Zwonek (2013)

Annales Polonici Mathematici

We present a result on the existence of some kind of peak functions for ℂ-convex domains and for the symmetrized polydisc. Then we apply the latter result to show the equivariance of the set of peak points for A(D) under proper holomorphic mappings. Additionally, we present a description of the set of peak points in the class of bounded pseudoconvex Reinhardt domains.

Quantitative estimates for the Green function and an application to the Bergman metric

Klas Diederich, Gregor Herbort (2000)

Annales de l'institut Fourier

Let D n be a bounded pseudoconvex domain that admits a Hölder continuous plurisubharmonic exhaustion function. Let its pluricomplex Green function be denoted by G D ( . , . ) . In this article we give for a compact subset K D a quantitative upper bound for the supremum sup z K | G D ( z , w ) | in terms of the boundary distance of K and w . This enables us to prove that, on a smooth bounded regular domain D (in the sense of Diederich-Fornaess), the Bergman differential metric B D ( w ; X ) tends to infinity, for X n / { O } , when w D tends to a boundary point....

Remarks on the relative intrinsic pseudo-distance and hyperbolic imbeddability

Nguyen Doan Tuan, Pham Viet Duc (2005)

Annales Polonici Mathematici

We prove the invariance of hyperbolic imbeddability under holomorphic fiber bundles with compact hyperbolic fibers. Moreover, we show an example concerning the relation between the Kobayashi relative intrinsic pseudo-distance of a holomorphic fiber bundle and the one in its base.

Schwarz-type lemmas for solutions of ¯ -inequalities and complete hyperbolicity of almost complex manifolds

Sergey Ivashkovich, Jean-Pierre Rosay (2004)

Annales de l'Institut Fourier

The definition of the Kobayashi-Royden pseudo-metric for almost complex manifolds is similar to its definition for complex manifolds. We study the question of completeness of some domains for this metric. In particular, we study the completeness of the complement of submanifolds of co-dimension 1 or 2. The paper includes a discussion, with proofs, of basic facts in the theory of pseudo-holomorphic discs.

Strengthened Moser’s conjecture, geometry of Grunsky coefficients and Fredholm eigenvalues

Samuel Krushkal (2007)

Open Mathematics

The Grunsky and Teichmüller norms ϰ(f) and k(f) of a holomorphic univalent function f in a finitely connected domain D ∋ ∞ with quasiconformal extension to ^ are related by ϰ(f) ≤ k(f). In 1985, Jürgen Moser conjectured that any univalent function in the disk Δ* = z: |z| > 1 can be approximated locally uniformly by functions with ϰ(f) < k(f). This conjecture has been recently proved by R. Kühnau and the author. In this paper, we prove that approximation is possible in a stronger sense, namely,...

Currently displaying 121 – 140 of 166