The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study singularities obtained by the contraction of the maximal divisor in compact (non-kählerian) surfaces which contain global spherical shells. These singularities are of genus 1 or 2, may be -Gorenstein, numerically Gorenstein or Gorenstein. A family of polynomials depending on the configuration of the curves computes the discriminants of the quadratic forms of these singularities. We introduce a multiplicative branch topological invariant which determines the twisting coefficient of a non-vanishing...
Currently displaying 1 –
2 of
2