On the Kobayashi and Caratheodory pseudometric reductions of homogeneous complex spaces
Si esamina la successione spettrale per la -coomologia dello spazio totale di un fibrato olomorfo nel caso in cui le fibre siano varietà di Stein.
A family of germs at 0 of holomorphic vector fields in C3 without separatrices is constructed, with the aid of the blown-up foliation F in the blown-up manifold C3. We impose conditions on the multiplicity and the linear part of F at its singular points (i.e., non-semisimplicity and certain nonresonancy), which are sufficient for the original vector field to be separatrix-free.
We prove that the well-known Harder-Narsimhan filtration theory for bundles over a complex curve and the theory of optimal destabilizing -parameter subgroups are the same thing when considered in the gauge theoretical framework.Indeed, the classical concepts of the GIT theory are still effective in this context and the Harder-Narasimhan filtration can be viewed as a limit object for the action of the gauge group, in the direction of an optimal destabilizing vector. This vector appears as an extremal...
In [6], orbifold G-bundles on a certain class of elliptic fibrations over a smooth complex projective curve X were related to parabolic G-bundles over X. In this continuation of [6] we define and investigate holomorphic connections on an orbifold G-bundle over an elliptic fibration.
It is shown that operators occurring in the classical Penrose transform are differential. These operators are identified depending on line bundles over the twistor space.