Page 1 Next

Displaying 1 – 20 of 31

Showing per page

Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry

Laurent Bruasse, Andrei Teleman (2005)

Annales de l’institut Fourier

We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object....

Harmonic metrics and connections with irregular singularities

Claude Sabbah (1999)

Annales de l'institut Fourier

We identify the holomorphic de Rham complex of the minimal extension of a meromorphic vector bundle with connexion on a compact Riemann surface X with the L 2 complex relative to a suitable metric on the bundle and a complete metric on the punctured Riemann surface. Applying results of C. Simpson, we show the existence of a harmonic metric on this vector bundle, giving the same L 2 complex.

Hodge metrics and the curvature of higher direct images

Christophe Mourougane, Shigeharu Takayama (2008)

Annales scientifiques de l'École Normale Supérieure

Using the harmonic theory developed by Takegoshi for representation of relative cohomology and the framework of computation of curvature of direct image bundles by Berndtsson, we prove that the higher direct images by a smooth morphism of the relative canonical bundle twisted by a semi-positive vector bundle are locally free and semi-positively curved, when endowed with a suitable Hodge type metric.

Holomorphic line bundles and divisors on a domain of a Stein manifold

Makoto Abe (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let D be an open set of a Stein manifold X of dimension n such that H k ( D , 𝒪 ) = 0 for 2 k n - 1 . We prove that D is Stein if and only if every topologically trivial holomorphic line bundle L on D is associated to some Cartier divisor 𝔡 on D .

Holomorphic Morse Inequalities on Manifolds with Boundary

Robert Berman (2005)

Annales de l’institut Fourier

Let X be a compact complex manifold with boundary and let L k be a high power of a hermitian holomorphic line bundle over X . When X has no boundary, Demailly’s holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault cohomology groups with values in L k , in terms of the curvature of L . We extend Demailly’s inequalities to the case when X has a boundary by adding a boundary term expressed as a certain average of the curvature of the line bundle and the Levi curvature of the...

Holomorphic non-holonomic differential systems on complex manifolds

S. Dimiev (1991)

Annales Polonici Mathematici

We study coherent subsheaves 𝓓 of the holomorphic tangent sheaf of a complex manifold. A description of the corresponding 𝓓-stable ideals and their closed complex subspaces is sketched. Our study of non-holonomicity is based on the Noetherian property of coherent analytic sheaves. This is inspired by the paper [3] which is related with some problems of mechanics.

Currently displaying 1 – 20 of 31

Page 1 Next