Loading [MathJax]/extensions/MathZoom.js
Skip to main content (access key 's'), Skip to navigation (access key 'n'), Accessibility information (access key '0')
EuDML - The European Digital Mathematics Library

Login | Register | (Why Register?)

  • Home
  • Advanced Search
  • Browse by Subject
  • Browse by Journals
  • Refs Lookup
  • Subjects
  • 32-XX Several complex variables and analytic spaces
  • 32Sxx Singularities
  • 32S30 Deformations of singularities; vanishing cycles

32Sxx Singularities

  • 32S05 Local singularities
  • 32S10 Invariants of analytic local rings
  • 32S15 Equisingularity (topological and analytic)
  • 32S20 Global theory of singularities; cohomological properties
  • 32S22 Relations with arrangements of hyperplanes
  • 32S25 Surface and hypersurface singularities
  • 32S30 Deformations of singularities; vanishing cycles
  • 32S35 Mixed Hodge theory of singular varieties
  • 32S40 Monodromy; relations with differential equations and D -modules
  • 32S45 Modifications; resolution of singularities
  • 32S50 Topological aspects: Lefschetz theorems, topological classification, invariants
  • 32S55 Milnor fibration; relations with knot theory
  • 32S60 Stratifications; constructible sheaves; intersection cohomology
  • 32S65 Singularities of holomorphic vector fields and foliations
  • 32S70 Other operations on singularities
  • 32S99 None of the above, but in this section
  • Items

All a b c d e f g h i j k l m n o p q r s t u v w x y z Other

Page 1

Displaying 1 – 5 of 5

Showing per page

Elliptic Deformations of Minimally Elliptic Singularities.

Jonathan M. Wahl (1980)

Mathematische Annalen

Équations différentielles à points singuliers irréguliers en dimension 2

Claude Sabbah (1993)

Annales de l'institut Fourier

Erratum : “Real deformations and complex topology of plane curve singularities”

Norbert A'Campo (1999)

Annales de la Faculté des sciences de Toulouse : Mathématiques

Erratum to the paper : “Déformations à nombre de Milnor constant: quelques résultats sur les polynômes de Bernstein”

Françoise Geandier (1991)

Compositio Mathematica

Étude du comportement du polynôme de Bernstein lors d’une déformation à μ constant de X a + Y b avec ( a , b ) = 1

Pierrette Cassou-Noguès (1987)

Compositio Mathematica

Currently displaying 1 – 5 of 5

Page 1

EuDML
  • About EuDML initiative
  • Feedback
  •  version 2.1.7